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We discuss mixing and transport in three-dimensional, steady, Navier–Stokes flows
with the no-slip condition at the boundaries. The advective flux is related to the
dynamics of the Navier–Stokes equations and a prediction is made of the scaling
of the advective flux with the Reynolds number: the flux is expected to decay as
the Reynolds number goes to infinity. This prediction is made via a Melnikov-type
calculation together with boundary layer concepts through which the flow is split
into an integrable and a small non-integrable part. The rate of decay is related to the
details of viscous flow in boundary layers. The Melnikov function is related to the
Bernoulli integral of the underlying Euler flow. The effects of molecular diffusivity
are discussed and the effective axial diffusivity scaling predicted as a function of
Reynolds and Péclet numbers. Using these ideas, we study the mass transport in
the wavy vortex flow in the Taylor–Couette apparatus as a particular example.
We propose an explanation of the observed non-monotonic behaviour of flux with
increasing Reynolds number that was not captured in any of the previous models. It
is shown that there is a Reynolds number at which the axial flux in the wavy vortex
flow is maximized. At the low range of Reynolds numbers for which the wavy vortex
flow is stable the flux increases, while for large Reynolds numbers it decreases. We
compare these predictions with the available experimental and numerical data on the
wavy vortex flow.

1. Introduction
In this paper we study an interesting phenomenon in chaotic advection that is a

direct consequence of Navier–Stokes equations. We show that, in general, the size
of chaotic regions in Navier–Stokes flows that are two-dimensional unsteady, three-
dimensional steady or steady in a rotating frame decreases with the increase of the
Reynolds number when the Reynolds number Re is increased and no instabilities are
present. This is the consequence of the flow being split into an integrable Euler part
and a possibly non-integrable viscous part. Applying the boundary layer singular
perturbation concepts, the typical decay of the viscous contribution when Re→∞ is
Re−1/2 (Van Dyke 1964) and we show that the flux in such flows decays at this rate.
As a particular example for which experimental data are available, we show that by
increasing the Reynolds number in the wavy vortex flow, the flux between vortices
(and thus the effective dispersion in the flow) admits an asymptotic expansion of
the type aRe−1/2 + bRe−1 + O(Re−3/2), where a, b are constant. Thus increasing the
Reynolds number in this set-up decreases transport and mixing in the flow.

We discuss the experimental studies of this phenomenon done by Wereley &
Lueptow (1998) and Desmet, Verelst & Baron (1996) and a numerical study by
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Rudman (1997). Other experimental studies (Tam & Swinney 1987; Moore & Cooney
1995) concentrated more on the flux in the turbulent regime. The advective flux was
examined by Wereley & Lueptow experimentally and Rudman numerically. In the
study of Desmet et al. (1996) molecular diffusion effects were measured as well.

The first study of the change of chaotic advection properties with the Reynolds
number was done by Bajer & Moffatt (1992) in the context of small Reynolds number
flows between two concentric steadily rotating spheres. In that paper it was concluded
that inertial effects (i.e. the increase of the Reynolds number) increased the chaotic
advection in the flow for small Reynolds numbers. We investigate the other limit – that
of large Reynolds numbers – and conclude that the opposite is true: the flow becomes
more integrable with the increase in Reynolds number.

The theory that we provide is based on the perturbative Melnikov method. Holmes
(1984) was the first to use the Melnikov method in the context of transport in
three-dimensional fluid flows. This paper goes beyond Holmes’ fundamental paper in
several aspects: the Melnikov function is calculated in terms of the integral of motion
of the unperturbed velocity field, thus making a connection to the recently developed
theory of reduction by symmetry of volume-preserving flows (Mezić 1994; Mezić &
Wiggins 1994; Haller & Mezić 1998). Yannacopoulos et al. (1998) observed that the
symmetries of the flow can be divided in two types: dynamical symmetries which arise
as a consequence of the equation of motion that the fluid satisfies and geometrical
symmetries typically arising from the geometry of the container. We exploit these
notions further here. We also use the theory of MacKay (1993) on minimum flux
surfaces in three-dimensional, volume-preserving flows and the boundary layer theory
that provides us with the size of the perturbation from an Euler flow.

The structure of the paper is as follows. In § 2, we review topics of integrability
and chaos in three-dimensional incompressible Newtonian fluid flows. Flux through
surfaces separating different regions of the flow is related to the dynamics of Navier–
Stokes equations and an explicit prediction is made of the scaling of the advective flux
with the Reynolds number at high Reynolds number for flows in which separating
manifolds do not intersect boundary layers. The advective flux is expected to scale
as Re−1/2 as this is the correction to Euler flow inside the container due to viscous
boundary layers. The Melnikov function is related to the Bernoulli integral of the
underlying Euler flow. In the case when molecular diffusivity effects are important,
we predict that the flux will scale as c1Re

−1/2 +c2Pe
−1/2 for large Reynolds and Péclet

numbers, where Pe−1/2 is the thickness of the thermal boundary layer around the
separating surfaces. In § 3, we predict that the advective flux in the wavy vortex flow
in the Taylor–Couette apparatus at large Reynolds numbers admits an asymptotic
expansion of the type aRe−1/2 + bRe−1 + O(Re−3/2), where a, b are constant. The
existence of a Reynolds number that maximizes flux in the apparatus is established.
The effective diffusivity in the wavy vortex flow is predicted to scale as Deff ∼
(C+Sc−1/2)/Re1/2Sc1/2, where Sc is the Schmidt number. We compare the predictions
with the experimental data in § 4 and conclude in § 5.

The experimental work that we discuss is not conclusive in terms of the power-law
exponents for the flux: these studies were not done in order to test a particular power
law and contain a small number of data points. Further experimental test of the
predictions given will be necessary.

2. Boundary layers and non-integrability
In this section we discuss the connection between the structure of Navier–Stokes

flows in the presence of solid boundaries at large Reynolds number and integrability
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of particle motion in such flows. A connection is made between boundary layer theory
and dynamical systems methods of computing flux.

2.1. Integrability and chaos in 3-D incompressible steady flows

In 1965 Arnold wrote a note on the integrability of three-dimensional Euler flows
(Arnold 1966). In that note he asserted that three-dimensional Euler flows are in-
tegrable except in the case when vorticity and velocity are parallel. In fact, even
when vorticity and velocity are parallel, but the constant of proportionality varies
with space, such Beltrami flows are still integrable. Both of these facts were known
to Lamb (Lamb 1932) and the surfaces spanned by non-parallel velocity and vor-
ticity are known as Lamb surfaces (see Sposito 1997 for a detailed discussion of
these). Based on the result on integrability, Arnold suggested the special solution of
Euler’s equation, the so-called ABC (Arnold–Beltrami–Childress) flows as possible
non-integrable flows. These are spatially periodic Euler flows for which velocity is
proportional to vorticity (i.e. they are Beltrami flows). Hénon 1966 perfomed a nu-
merical simulation of ABC flows and found evidence of chaotic behaviour. Thus, the
first results in the field of chaotic advection were based on the analysis of velocity
fields that were smooth solutions of Euler equations. The flows discussed in chaotic
advection studies in the 1980s and 1990s were kinematic models (e.g. the ABC maps of
Feingold, Kadanoff & Piro 1988), solutions of Stokes equations (e.g. Bajer & Moffatt
1990; Stone, Nadim & Strogatz 1991), or weak solutions based on singular vortex
distributions (e.g. Aref 1984; Rom-Kedar 1988; Rom-Kedar, Leonard & Wiggins
1990). Recently, a few studies (Ashwin & King 1995a, b; Yannacopoulos et al. 1998;
Balasuriya, Jones & Sandstede 1997) appeared that took account of the restrictions
imposed by the fact that Newtonian fluid flows satisfy Navier–Stokes equations.

One way of interpreting Arnold’s suggestion on the importance of ABC flows is
that viscous perturbations to Euler flows can be taken to be small away from the
boundaries and, due to integrability of Euler flows that do not have velocity and
vorticity proportional, chaotic motion can be only caused by an ABC-type flow. But,
ABC flows are quite special. The condition that velocity is proportional to vorticity is
very hard to establish experimentally (T. H. Solomon 1998, personal communication).
In fact it can be shown rigorously that – in the region of the flow where inertial forces
are dominant – the assumption that the steady flow can be split into dominant inertial
part that solves the Euler equation and small viscous part leads to the conclusion
that the Euler (inertial) part cannot be a chaotic ABC flow (Mezić 2000). In what
follows, we paint quite a different picture of the physical nature of chaotic fluid
particle motion in three-dimensional steady fluid flows: the cause of chaotic motion
lies in viscous forces and, as Reynolds number increases to infinity, the extent of
chaotic motion starts to decrease in a well-defined way.

2.1.1. Geometrical and dynamical symmetries

A sufficient condition for integrability (i.e. absence of chaotic motion) of a three-
dimensional, incompressible vector field v is that it admits a volume-preserving
symmetry (Mezić 1994; Mezić & Wiggins 1994; Haller & Mezić 1998), i.e. that there
exists another incompressible vector field s such that the Lie bracket [v, s] is zero. In
Cartesian coordinates these conditions become

[v, s] = v · ∇s− s · ∇v = 0,
∇ · s = 0.

}
(2.1)
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When general incompressible v, s satisfy (2.1) a function B defined by the equation

∇B = −v × s (2.2)

is an integral of motion for both v and s, i.e. B is conserved on trajectories of both
of these vector fields:

dB

dt
= v · ∇B = −v · v × s = 0 = −s · v × s = s · ∇B =

dB

ds
,

where s is a time-like variable used to parametrize trajectories of the vector field s. As
an example of these general results, consider an incompressible vector field v which
is symmetric with respect to translation along the z-axis, i.e. the velocity components
(vx, vy, vz) are independent of z. Let s = (0, 0, 1). Then (2.1) are clearly satisfied, as in
components we have

∂vx

∂z
=
∂vy

∂z
=
∂vz

∂z
= 0,

∂vx

∂x
+
∂vy

∂y
= 0,

and (2.2) becomes

∂B

∂x
= vy,

∂B

∂y
= −vx.

These equations clearly have a solution for B because v is incompressible. The cases
of rotational and helical symmetry are treated similarly. The types of symmetries that
result from symmetries of the flow domain have been called geometrical symmetries
in Yannacopoulos et al. (1998).

Another type of symmetry that can arise is induced by the evolution equations
of the fluid. Such a symmetry is for example the content of the Taylor–Proudman
theorem for fast rotating flows (Batchelor 1967): when the Rossby number of a flow
rotating around an axis with angular velocity Ω goes to zero, the velocity field satisfies

Ω · ∇v = 0.

Thus, such a flow possesses an integral of motion as (2.1) is satisfied with s = Ω.
More generally, it is clear at once that (2.1) are satisfied by velocity v and vorticity
ω = s of an Euler flow. Thus every Euler flow is integrable with the Bernoulli integral
B = (1/2)v2 + p/ρ. The surfaces of constant B are called Lamb surfaces (see Sposito
1997). The topology of these surfaces inside a bounded analytical surface was shown
to be toroidal or cylindrical by Arnold (1966), with the exception of separating
surfaces between tori and cylinders.

Consider now an unbounded steady incompressible Navier–Stokes flow in R3. It
satisfies

v · ∇ω − ω · ∇v = Re−1∆ω (2.3)

where Re is the Reynolds number of the flow. For such flows a regular perturbation
expansion at large Reynolds numbers would read

v = vE + Re−1v1 + O(Re−2), (2.4)

where vE satisfies Euler’s equation of motion. This flow is thus O(Re−1) away from
an Euler flow. That Euler flow is integrable (Mezić 2000). Thus, the flux through any
separating surfaces in this flow will be O(Re−1), as was pointed out in the introduction
of Mezić (1994), if v1 does not possess any symmetries.

The case of two-dimensional unsteady perturbaton of steady flows, which was
treated rigorously in Balasuriya et al. (1997), can also be considered within the theory
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outlined above. Two-dimensional steady flows of incompressible fluid are known to
be integrable (i.e. the possibility of chaotic advection is excluded) due to the existence
of a streamfunction. Consider an unsteady, two-dimensional Euler flow v that is
time-periodic with period 2π/β. Its vorticity ω satisfies the two-dimensional Euler
equation

∂ω

∂t
+ v · ∇ω = 0,

which implies that ω is a quantity conserved on particle paths and thus the flow
is integrable. In terms of the discussion above, v possesses a dynamical symmetry.
To show this, let the domain in R2 in which the flow takes place be denoted by
D. Then the three-dimensional steady flow vE = (vx, vy, β) is defined on D×S1. For
example, when D is a region in R2 whose boundary is a circle, then D×S1 has the
shape of a doughnut. The symmetry vector field s such that [vE, s] = 0 is given by
s = (∂ω/∂y,−∂ω/∂x, 0) (Haller & Mezić 1998). At large Re, vE serves as the first
term in the expansion of a Navier–Stokes flow. If there are no solid boundaries, then
this expansion is (2.4).

This situation changes for Navier–Stokes flows for which there are viscous boundary
layers. We investigate this case in the next subsection. It is interesting to point out
here that we have not been able to construct any dynamical symmetries for fluid
flows governed by the Stokes equation.

2.2. Inner and outer expansions

We consider the problem of determining the flux of fluid particles in and out of
different flow regions in three-dimensional, steady Navier–Stokes flows in closed
containers.

To be more specific, consider figure 1 which shows a sketch of separated regions
of the flow in a region R with boundary ∂R. We assume that the three-dimensional
flow field is topologically of vortex-breakdown type, as shown in figure 1. Consider
the flow in R governed by the steady Euler equation

vE · ∇vE = −∇pE. (2.5)

where the density ρ = 1 and a driving potential force has been absorbed into the
pressure. The boundary condition on ∂R is v · n = 0. By the discussion above, the
velocity field is integrable and there is no flux of fluid between the regions denoted
by I and II. We assume that the flow has swirl and two typical trajectories outside
the vortex ‘bubble’ are shown. The surface Σ is filled with trajectories that approach
the stagnation point A when time goes to negative infinity and approach stagnation
point B when time goes to positive infinity. These are the heteroclinic orbits (Wiggins
1990). For large Reynolds numbers, outside the boundary layer, the solution to (2.5)
is the first approximation to the Navier–Stokes velocity field governed by

v · ∇v = −∇p+
1

Re
∆v, (2.6)

where the velocity and pressure have been made non-dimensional, Re is the Reynolds
number and the boundary condition on ∂R is v = vs, where vs is the surface speed (this
condition may be local if, for example, the surface is fitted with microactuators able
to change the local speed of the flow). We assume that in the presence of boundaries
the velocity field can be split (Van Dyke 1964)

v = vE + vP + εw
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A

B

I II

Σ

R ∂R

Figure 1. An Euler flow in a container with no symmetry.

where vE satisfies Euler’s equations of motion, vP = ṽP − vE inside boundary layers,
where ṽP is the (Prandtl) solution that is valid inside the boundary layer of width
O(Re−1/2), and decays exponentially outside the boundary layers, and εw is the viscous
correction such that ε = O(Re−1/2) for Re→∞. The inner expansion in the boundary
layer is such that viscous effects are O(1). Thus the velocity field in the boundary
layer is, in the absence of geometrical symmetries, non-integrable. In the outer region
the velocity field is

v = vE + εw + O (exp)

where O (exp) denotes terms that are exponentially small in the distance to the
boundary. This type of the velocity field splitting has recently been investigated
rigorously for simple boundary geometries in two and three dimensions (Caflisch &
Sammartino 1997, 1998). If the Euler velocity field vE is not such that cvE = ∇× vE ,
where c is a constant (i.e. vE is not Beltrami), then the Bernoulli integral B = p+v2

E/2
is non-trivial, i.e. is not constant in any three-dimensional subdomain. If we assume
that surfaces separating I and II do not intersect boundary layers, then we can
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A

B

I

II

Γ (t)

D

C

W s
B

Wu
A

LI!II

LII!I

Figure 2. Surface of minimum flux for the perturbed Euler flow.

analyse the perturbed velocity v = vE + εw + O(exp) to determine whether there is
any advective flux present.

The geometry of such a problem has been analysed in MacKay (1993) for steady
perturbations and Holmes (1984) for unsteady perturbations. The fixed points A and
B persist under perturbation, together with their unstable and stable manifolds Wu

A

and Ws
B (Wiggins 1995) as sketched in figure 2. By the volume preservation, Wu

A∪Ws
B

must intersect at least twice at the equator z = 0, and LI→II ∪LII→I parts are added in
order to form a closed bubble. MacKay (1993) proves that Sp = Wu

A∪Ws
B∪LI→II∪LII→I

is a surface of locally minimum flux: in his development of the theory of transport
for three-dimensional fluid flows he proves that a surface has locally minimum flux if
it satisfies the following two conditions:

(i) It can be decomposed into surfaces Pi of unidirectional stationary algebraic
flux Fi

A =
∫
Pi
v · ndPi. The algebraic flux is stationary if and only if the boundary of

the surface is invariant.
(ii) It has no ‘sneaky returns’, i.e. there are no orbits exiting and entering the

surface with arbitrarily small paths travelled between exiting and entering.
On examining the sketch of intersections in figure 2 it is clear that the surface Sp
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can be decomposed into two pieces that are spanned by two heteroclinic orbits and
thus by Theorem 1 in MacKay (1993) both of these pieces have stationary algebraic
flux. In addition, it does not have any ‘sneaky returns’ as the unperturbed vector
field is O(1) on the boundary of the bubble. By the volume preservation, Wu

A ∪Ws
B

must intersect at least twice, but having more intersections does not change the
theory much. An expression for flux between different regions can be developed using
Melnikov theory and we do this next. MacKay (1993) also relates flux to a Melnikov
function, but in a way that is not useful for our purpose: owing to the particular
form of the velocity field we consider, we write below the Melnikov function in terms
of the Bernoulli integral of the underlying Euler flow.

For simplicity, let us assume that the separating surface is a sphere for the un-
perturbed Euler flow vE which is symmetric with respect to rotation around vertical
axis. Let us parametrize the unperturbed spherical bubble by the time t0 along a
heteroclinic orbit and its intersection with the equator of the unperturbed bubble, θ0.
Using the higher-dimensional Melnikov method similar to that developed by Gru-
endler (1985), Holmes (1984), the distance d(θ0, t0) between Wu

A and Ws
B is given by

d(θ0, t0) = εM(θ0, t0)/|∇B(θ0, t0)|+ O(ε2), where

M(θ0, t0) =

∫ ∞
−∞
w · ψ1 × ψ2(γθ0

(t− t0)) dt,

ψ2(γθ0
(t− t0)) = vE(γθ0

(t− t0)), and ψ1 satisfies the variational equation along γθ0

ψ̇
1

= DvE · ψ1. (2.7)

From the previous considerations, in an Euler flow the vorticity ω satisfies (2.7) and
we can put ψ1 = ω, thus obtaining

M(θ0, t0) = −
∫ ∞
−∞
w · vE × ω(γθ0

(t− t0)) dt.

Note that M(θ0, t0) does not depend on ε. The integral converges because of the
exponential convergence of vE to 0 along the heteroclinic orbit (Wiggins 1990). For
the Bernoulli integral B we have

∇B = −vE × ω.
Thus,

M(θ0, t0) =

∫ ∞
−∞
∇B · w(γθ0

(t− t0)) dt.

In fact, as B is invariant along vE , and vP decays fast outside of the boundaries

M(θ0, t0) =
1

ε

∫ ∞
−∞
∇B · v(γθ0

(t− t0)) dt,

and the Melnikov function is equal to the integral along the heteroclinic orbit of the
flux through the Lamb surface of constant B that separates regions I and II.

The expression (2.2) for the Melnikov function can be derived directly by using
geometrical methods of Guckenheimer & Holmes (1983) and Wiggins (1990). The
distance between the stable and unstable manifolds can be expressed as

d(θ0, t0) = ε
M(θ0, t0)

|∇B(θ0, t0)| + O(ε2).
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The geometric flux through S is given by

FCA =

∫
LI→II∪LII→I

|vNS · n|dA

where n is the unit normal to the surface of the lobe LI→II or LII→I and dA its area
element. Thus, to the first order in ε,

FCA = ε

∫ 2π

0

|M(θ0, 0)|
|∇B(θ0, 0)|vz(θ0) dθ0

where vz is the velocity component in the direction of the vertical axis.
Recall that the surface S is the surface of locally minimum flux. Our calculation

does not exclude the possibility that elsewhere, there is a surface that separates the
apparatus into an inner and an outer part through which the flux is smaller than the
flux through S , thus restricting the flux through the whole apparatus to be smaller.
Strictly speaking, we have only proven that flux is smaller than ε. But intuitively,
S is the surface through which flux is globally minimal and thus the flux scales as
ε = Re−1/2 for large Reynolds numbers. This amounts to assuming that the bound
we have obtained is optimal. The second term in the Navier–Stokes expansion scales
as Re−1 and thus we expect that the flux has an asymptotic expansion

F = aRe−1/2 + bRe−1, (2.8)

where a, b are constants.
The difference between making a heuristic argument for the perturbative order of

the flux, like the one in § 2.1.1, and the Melnikov method is that the latter identifies
surfaces that have locally minimum flux as the important ones to establish an upper
bound for the flux and also gives an expression –M(θ0, t0) – that has to be non-zero
in order for the bound to hold. If M is non-zero, no surface close to the surface of
locally minimum flux has zero flux and, because of the structure of the unperturbed
problem – the only surfaces splitting the cylinder in two domains being the separating
surfaces – a conjecture can be made that the bound on the flux is sharp.

We will do a similar calculation in the context of the wavy vortex flow in the
Taylor–Couette apparatus in § 3. In the case that we have considered above, the
separating surfaces were outside the boundary layers. In the case of the wavy vortex
flow the separating surfaces intersect the boundary layers and we have to make a
separate argument that the splitting of Navier–Stokes flow at large Reynolds numbers
as introduced above still holds.

The intersection of stable and unstable manifolds causes complicated motion in the
surrounding region and, given specific expressions for the flow conditions for chaotic
motion in Wiggins (1992b), could be checked to prove the existence of a zero measure
set on which the dynamics of the system is chaotic.

2.3. The molecular diffusion effects

The above argument dealt with the purely advective effects. Assume that the fluid
has molecular diffusivity D, with the Péclet number Pe = Ul/D, where U and l are
the characteristic velocity and lengthscale of the flow. The molecular diffusion is then
the second mechanism (besides chaotic advection) that affects the flux across the
surface Sp. The flux induced by molecular diffusion is proportional to the width of
the thermal boundary layer around the separating surface, Pe−1/2. The fluxes induced
by molecular diffusivity and chaotic advection can be added to yield the total flux
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across Sp:

F ∼ aRe−1/2 + cPe−1/2,

where a, c are constants.

3. Bounded flows with shear layers emanating from the wall
In the previous section we discussed flux between different regions of steady flows

whose separating manifolds do not intersect the boundary layer. There are many
examples of flows in which this is not the case, such as laminar Taylor vortex flow
between rotating concentric cylinders and wavy vortex flow that is steady in a rotating
frame. Two complications arise when we want to extend our previous analysis to this
case: first, it is not clear that the flow can still be separated into an Euler flow and
a small viscous contribution; and secondly, flux across separating surfaces will have
a contribution from the boundary layer flow that is not necessarily integrable. These
issues are related to the the exact structure of the so-called shear layers emanating
from the walls. This topic has been a subject of some debate, for example in the
context of the flow induced by a cylindrical sphere rotating in a quiescent fluid (see
e.g. Dennis, Ingham & Singh 1981, p. 377). In this section we first argue that the
separation into Euler and viscous parts still holds by starting with an ansatz expansion
into powers of Re−1/2. We use this expansion to predict the structure of shear layers
and then compare the results with available numerical data on the rotating sphere
flow. Given that all the analytical predictions agree with numerical results of Dennis
et al. (1981) we feel encouraged to apply the methods to wavy vortex flow, which has
a similar structure, and study chaotic advection in that flow based on the expansions
employed above.

Flux measurements in the wavy vortex flow contain a surprise: on increasing the
Reynolds number, the flux first increases and then decreases (Wereley & Lueptow
1997). Previous models of this flow based on kinematic models and chaotic advection
ideas (Broomhead & Ryrie 1988; Ryrie 1992; Rudolph, Shinbort & Lueptow 1998)
are consistent in predicting monotonic increase. The study of Ashwin & King (1997)
uses perturbation expansion near the onset of wavy vortices, and thus is based on
Navier–Stokes dynamics, but does not give a prediction of flux vs. Reynolds number
behaviour.

We show that the dynamics based decomposition of the velocity field predicts
the non-monotonic behaviour observed in Wereley & Lueptow (1997) qualitatively
correctly. We also compare the scaling based on restricted available data – our pre-
diction being that at large Reynolds numbers advective flux in a three-dimensional
wavy vortex flow between concentric cylinders has an asymptotic expansion of the
form (2.8).

3.1. Boundary layers and shear layers

The purpose of this subsection is to establish some evidence that the splitting v =
vE + vP + εw still holds in the case when a separating surface intersects boundary
layers. The geometry of the problem is shown in figure 3. Boundary layers are drawn
next to the wall. The flow coming from two opposite directions at the boundary
collides, leaves the boundary and goes into the shear layer. We will show that
assuming expansion v = vE + εw+O(exp) for the flow outside boundary layers leads
to predictions that are consistent with numerical experiments of Dennis et al. (1981)
on boundary layer collision on a sphere rotating in a quiescent fluid. In the next
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Re–1/2

Re–1/4

Re–1/2

Figure 3. Structure of shear and boundary layers.

subsection we will apply these ideas to the wavy vortex flow in the Taylor–Couette
apparatus.

Consider the steady flow within a shear layer. Assuming the expansion of the
velocity field as above and neglecting terms that are exponentially small away from
the boundary the Navier–Stokes equation (2.3) in the shear layer reads

(vE + εw) · ∇(ωE + εωw)− (ωE + εωw) · ∇(vE + εw) = ε2∆(ωE + εωw), (3.1)

where ωE = ∇× vE and ωw = ∇×w. Under the assumption that the boundary layers
are governed by shear and thus of order ε, the flow carries vorticity of order ε−1 into
the shear layers. Thus, the equation at order ε−1 in (3.1) reads

vE · ∇ωE − ωE · ∇vE = 0, (3.2)

which is, of course, just the steady Euler equation. At the next order we get

ε(w · ∇ωE − ωE · ∇w) = ε2∆ωE. (3.3)

We have already stated that vorticity in the shear layer comes from the wall
boundary layer and thus it is expected that ωE = O(ε−1). The left-hand side of (3.3)
is thus O(1). Let x be the coordinate along the wall and y the vertical coordinate
increasing along the separation line. The right-hand side of (3.3) then becomes

ε2

(
∂2ωE

∂x2
+
∂2ωE

∂y2

)
.

It can be assumed that in the shear layer (and outside the boundary layer) ∂2ωE/∂x
2 �
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∂2ωE/∂y
2 and thus we have

ε2 ∂
2ωE

∂x2
= O(1).

The thickness δx of the shear layer can be obtained from ε2ε−1/δ2
x = 1, i.e. δx =

O(ε1/2) = O(Re−1/4). Thus, the shear layers are much thicker than the wall boundary
layers, but the flow in them is inviscid to O(Re−1/2).

Dennis et al. (1981) performed careful numerical experiments to determine the
structure of boundary layers in the flow induced by a sphere rotating in an otherwise
quiescent fluid at Reynolds numbers up to 5000. They state (Dennis et al. 1981,
p. 376) that the thickness of the shear layer region is Re−1/4 in contradiction to
previous theories based on the existence of a recirculation zone in the collision
region. From our analysis above, the change of vorticity in the horizontal direction,
∂ωE/∂x = O(ε−1/ε1/2) = O(ε−3/2) = O(Re3/4). Dennis et al. (1981) observe the same
scaling for the change of vorticity in the direction of θ that is equivalent to our
x. Their numerical results support our contention that even for flows for which
separating manifolds intersect boundary layers, the flow outside boundary layers can
be written as v = vE + εw+O(exp). Thus, for large Reynolds numbers in steady
flows with no geometrical symmetry the flux outside boundary layers again is written
F = aRe−1/2 + bRe−1.

The boundary layer at the separation acquires thickness of size Re−1/4 in the
direction of y. It follows from the continuity equation that the component of w in
the direction of x must be of the order Re−1/4:

∂wx
∂x

+
∂wy
∂y

= 0,

where wy, y are O(1) and x is O(Re−1/4). Thus, the flux through the boundary layer
is of the order Re−1/2 or smaller and does not change the shape (although it could
change the coefficients) of the expansion F = aRe−1/2 + bRe−1.

4. An example: the wavy vortex flow
Consider the flow of a Newtonian fluid between concentric cylinders where the

inner cylinder is rotating and the outer is fixed. The wavy vortex flow (WVF) is the
flow between concentric cylinders that occurs at just slightly higher Reynolds number
Rec than that for the Taylor vortices (Coles 1965; Marcus 1984; King et al. 1984;
Wereley & Lueptow 1998). The flow is unsteady in the inertial frame of reference.
At the onset of instability the WVF has the form of an azimuthal travelling wave
perturbation to the Taylor vortex flow. The speed of the perturbation is somewhat less
than half the rotational velocity of the inner cylinder, and in the frame of reference
moving with the azimuthal wave the flow is steady. The WVF stays stable through
an order of magnitude range of Reynolds numbers. For example, in Wereley &
Lueptow’s experiments with the gap between cylinder being 0.89 cm and the radius
ratio 0.830 ± 0.003, Taylor vortices occur at Re = 102 and WVF is stable between
Reynolds numbers of 131 and at least 1227. We will first discuss the advective
transport of fluid at the high Reynolds number end.

4.1. Decomposition of the velocity field

We have discussed above that, even for flows with shear layers where vorticity
generated at the boundaries enters the interior of the flow, the splitting into Euler
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and small viscous parts should hold. Further evidence for this is the work of Marcus
(1984) in which it is shown that, for sufficiently large Reynolds numbers, there are
boundary layers at cylinder walls with the central part of the flow having essentially
no gradient of momentum flux. Based on these considerations, we assume that outside
boundary layers in the wavy vortex regime the flow can be decomposed as

v = vE + εw+O(ε2, exp) (4.1)

where vE satisfies Euler equations of motion, and εw is the viscous correction such
that ε = O(Re−1/2) for Re→∞. The Euler part vE is then a steady flow that satisfies

[vE,ωE + 2Ωk] = 0

where ωE = ∇× vE , k is the unit vector in the axial direction and Ω the speed of the
azimuthal wave. In addition we will assume that for the Euler part vE 6= c∇× vE for
some constant c, i.e vE cannot be Beltrami.

The scaling of the boundary layer that we have used is the same as that used
by Batchelor (1960) in his Appendix of the paper by Donnelly & Simon (1960) in
which they measured the torque for the Taylor vortex flow. Batchelor’s prediction
based on the viscous boundary layer scaling seemed to fit the torque data well. In
Batchelor’s case the structure of the shear layer is not important as he is interested in
the torque only. For our argument, it was important to show that in shear layers the
decomposition into an Euler part and a small viscous part still holds, as was done in
the previous subsection.

An alternative scaling was offered by King et al. (1984) and Marcus (1984), based
on marginal stability analysis. The flow in the boundary layer was assumed to be the
Couette flow that was marginally stable to centrifugal instabilities. This analysis gave
the scaling of the boundary layer to be Re−2/3. Our assumption is then effectively
that, at the higher range of Reynolds numbers, shear effects dominate over centrifugal
effects in boundary layers.

4.2. The Melnikov function

The Euler part of the velocity field vE is integrable due to the dynamical symmetry
generated by the vorticity field ω = ωE + 2Ωk. An integral of motion for vE is
given by B = (1/2)(v2

E + v2
r ) + p/ρ where vr = Ωrp, rp = x2 + y2 is the polar radius

of a point and ρ is the density of the fluid, which is assumed to be a constant.
Because of the cellular nature of the flow at finite Re, we assume that vE has the
structure indicated in figure 4. In fact, Wereley & Lueptow (1998) show that with
increasing Reynolds numbers the flow acquires a simpler, more cellular structure –
another argument for the decomposition into an integrable, cellular Euler flow and
a small viscous part. In figure 4 we show the Euler flow decomposed into cells. The
cell boundaries are two-dimensional manifolds ΓU and ΓD which are heteroclinic
to one-dimensional manifolds γUI , γUO , and γDI , γDO on the inner and outer cylinder.
For this flow, ΓU = Wu(γUO ) = Ws(γUI ) and ΓD = Wu(γDI ) = Ws(γDO ) where the
stable manifolds of the one-dimensional curves are denoted by Wu(γUO ),Wu(γDI ), and
the unstable ones by Ws(γDO ),W s(γUI ). ΓU and ΓD are filled with heteroclinic orbits
γUθ0

(t), γDθ0
(t) that are labelled by the azimuthal coordinate θ0 of their intersection

with a plane r0 = const. There is no flux between the cells in this integrable Euler
flow. The flow vE + εw has the structure at the boundaries of the cells shown in
figure 5. The stable and unstable manifolds of the one-dimensional manifolds on the
boundary do not coincide any more. The distance between these two manifolds can
be approximately calculated by the Melnikov method, as done above. The Melnikov
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Figure 4. An Euler flow between concentric cylinders.

function can again be represented in terms of the Bernoulli integral of the Euler flow.
The upper (lower) Melnikov function is given by

MU(D)(θ0, t0) =

∫ ∞
−∞
∇B · w(γU(D)

θ0
(t− t0))dt,

where t0 runs along the heteroclinic orbit γθ0
and Melnikov theory is straighforwardly

adapted for stable and unstable manifolds of periodic orbits. Note that MU(D)(θ0, t0)
does not depend on ε. The integral converges because of the exponential convergence
of ∇B to 0 along the heteroclinic orbit (Balasuriya, Mezić & Jones 2000).

4.3. The flux

We are interested in the axial flux of fluid in the apparatus. If we consider any region
in the apparatus bounded at the sides by cylinders and from above by surfaces (like
the cells in the Taylor vortex flow), the total flux into the region through say the top
surface must be equal to the flux from the cell to the region above the top surface,
due to incompressibility. But, for dispersion processes, it is the one-sided (‘geometric’)
flux that matters. In particular, if we find a surface that splits the space inside the
apparatus in two parts and that surface can be shown to have locally minimum flux,
we obtain an upper bound on the rate of transport (MacKay 1993).
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Figure 5. Wavy vortex flow in a rotating frame.

In figure 6 we show a locally minimum flux surface for vE + εw. Its boundaries are
the invariant lines γI and γO of the flow on the inner and outer cylinders. Consider
now the intersection of the stable manifold Ws(γI ) of γI and the unstable manifold
Wu(γO) of γO . They intersect in trajectories defined by the zeros of the Melnikov
function. Let us fix the θ0 = 0 plane and record its intersection with the stable
manifold of γI and the unstable manifold of γO . We denote the point of intersection
of these three surfaces as PIP. Then the surface that we seek is formed by the piece of
the stable manifold that extends from γI to the trajectory h that passes through PIP
and the piece of unstable manifold that extends from γO to h, together with the piece
of the plane θ0 = 0 between the stable and unstable manifolds. This surface splits the
solid annulus in two parts, denoted by I and II. Fluid in II can pass to I only through
the lobe LII→I that is bounded by pieces of stable and unstable manifolds in the plane
θ0 = 0 that stretch from PIP to point C shown in figure 6. In the same way, fluid in
I can pass to II only through the lobe LI→II. Checking again the requirements from
MacKay (1993) it is not hard to see that S is a minimum flux surface. In particular,
if PIP is chosen away from the unperturbed zero-swirl surface (which exists due to
the fact that we are working in the frame co-rotating with the wave speed), S consists
of two surfaces of unidirectional flux lying between the heteroclinic orbit that passes
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Figure 6. Minimum flux surface.

through PIP and periodic orbits at the boundary. It also has no ‘sneaky returns’. The
geometric flux through S is given by

FCA = 2

∫
LI→II

|vNS · n|dA
where n is the unit normal to the surface of the lobe LI→II and dA its area element.
Thus, to the first order in ε,

FCA = 2ε

∫ C

PIP

|M(θ0(l), t0(l))|
|∇B(θ0(l), t0(l))|v

θ
NS (θ0(l), t0(l))dl

where dl is the piece of the stable manifold between PIP and C and vθNS is the
azimuthal velocity. C is a point at the boundary of the lobes as shown in figure 6.
The flux is independent of the chosen t0 as the choice of different t0 only shifts the
surface along the stable and unstable manifolds.
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Figure 7. The least-squares fit to the Wereley–Lueptow data. The slope of
the straight line is −0.59.

Thus, the flux scales as ε = Re−1/2 for large Reynolds numbers. The intersection of
stable and unstable manifolds causes complicated motion in the surrounding region
(Wiggins 1992a).

4.4. Physical experiments

Wereley & Lueptow’s (1998) experiments are the only ones which measure the flux
in the wavy vortex flow directly. All the other data that we consider are for effective
axial diffusivity for which assumptions beyond those used in the theory above are
needed. It is natural to try to model the motion outside the integrable Euler core of
the vortices as a diffusive process. In fact Solomon, Tomas & Warner (1996) have
shown that the estimates coming from this assumption are confirmed by experiments
on two-dimensional, time-dependent chaotic flows. The axial effective diffusivity of
this process scales in the same way as the flux Deff ∼ aRe−1/2 + bRe−1.

In the measurements of Wereley & Lueptow (1998), the flux is obtained for the
surface that has a minimum mean axial velocity at the given time, and thus represents
a minimal flux surface. In the experiments, the flux between adjacent vortices first
increases and then decreases. The data from the experiments in the decreasing flux
regime are shown in figure 7. The least-square plot of the data gave a slope of −0.59,
not far from the predicted value.

It is important to pick the right surface when measuring the flux. For example,
taking a cross-cut through Taylor vortices would give positive geometric flux, but there
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is really no effective axial flux as the boundaries of vortices are material boundaries.
Choosing the boundary of the vortex as the flux surface would give the right result.

Desmet et al. (1996) measure the effective axial diffusivity for varying Reynolds
number at various Schmidt numbers. They do not explicitly state the nature of the
flow that they label ‘laminar’ as wavy vortex flow, but it is very likely that it is so
(this was also discussed by Ohmura et al. 1997). When the Schmidt number is fixed,
they find that the effective axial diffusivity scales as Re−1/2.

4.5. Numerical experiments

Rudman (1997) has performed numerical experiments on advective dispersion in the
WVF using a finite-difference method, for the parameter values corresponding to
those of Coles’ experiments (Coles 1965). In figure 8 we plot the data on effective
axial diffusivity Deff obtained by Rudman in the range of Reynolds numbers 486–756
where the axial effective diffusivity decays. The power law through the first couple of
points of data is −0.6, while it seems much steeper for the last three points. Rudman
observes that another frequency component is present in the numerical solution
at Re = 756 and higher which actually prevented him from calculating dispersion
at Reynolds numbers higher than 756. It might be that this causes the significant
difference in the slope for the last three points. In addition, the relationship between
the flux and Deff could be less straightforward than simple proportionality: the flow
in the boundary and shear layers, in particular the fact that it changes with the
Reynolds number, could affect the scaling of the assumed diffusive process.

4.6. Remark on the scaling of perturbation velocity

As a final remark on the assumed scaling in the light of these experimental results
we note that given the thickness of the boundary layer, our analysis below, strictly
speaking, gives an upper bound on the flux. All the experimental results that we have
discussed, except for the last three points on Rudman’s plot, give an exponent that is
smaller (i.e. bounded above) than −1/2, but bigger (i.e. bounded below) than −2/3.
The exponent −2/3 was derived using marginal stability to centrifugal instabilities
for Couette flow and would be an upper bound for the flux calculation. This suggests
that the instability is shear-driven at high Reynolds numbers.

4.7. Flux at the onset of the wavy vortex flow

Our argument for the decay of the flux at the large Reynolds number end of the
WVF existence is based on the dominance of inertial forces and the assumption
that the boundary layers are shear-dominated in this range. Taylor vortex flow, the
axisymmetric solution to which Couette flow is unstable, becomes itself unstable to
a non-axisymmetric mode and WVF arises. At the Reynolds number at which this
appears the viscous forces are still dominant and the main cause for the chaotic
advection is breaking of the geometrical rotational symmetry around the z-axis.

The chaotic transport at the onset of the WVF has been studied by Broomhead &
Ryrie (1988), Ashwin & King (1997) and Rudolph et al. (1998). Two of these studies
utilize kinematic models. Broomhead & Ryrie’s (1988) model is only qualitatively
related to the WVF velocity field, while that of Rudolph et al. (1998) is based on
PIV measurements of the velocity field. The work of Ashwin & King (1997) is a
comprehensive study of particle motion based on perturbation expansions in Davey,
DiPrima & Stuart (1968), but they do not discuss the dependence of flux on flow
parameters.

According to Broomhead & Ryrie (1988) based on perturbation expansions in
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Figure 8. The least-squares fit to Rudman’s data. The slope of the straight line through the black
circles is −0.60, through the open squares −0.88.

Davey, DiPrima & Stuart (1968), the velocity field can be decomposed as

vNS = vTVF +
√
Ta− Tacu

where Ta is the Taylor number in the apparatus. In this case vTVF is the velocity
field of the Taylor vortex flow and u is the wavy contribution. The velocity field vTVF
is integrable due to the rotational symmetry (this falls into the class of geometric
symmetries discussed earlier). In this case, the Reynolds number at which WVF is
stable is at its low end, so the effects of dynamical symmetry are much smaller than
those of the rotational symmetry. An integral of motion BR for vTVF is given by
(Haller & Mezić 1998)

∇BR = vTVF × g, (4.2)

where g is the infinitesimal generator of the rotational symmetry group, given by
dr/ds = 0, dθ/ds = 1, dz/ds = 0. The structure of vTVF is very similar to that shown
in figure 4, except that the separating manifolds are given by z = const. planes. The
upper (lower) Melnikov function is given by

MU(D)(θ0, t0) =

∫ ∞
−∞
∇BR · u(γU(D)

θ0
(t− t0))dt.

The integral converges because of the exponential convergence of ∇BR to 0 along the
heteroclinic orbit (Balasuriya et al. 2000). This result is valid for all volume-preserving



366 I. Mezić

flows when there is a volume-preserving symmetry for the unperturbed flow and we
are interested in calculating flux across separating manifolds. Note that we do not
need to compute BR in order to calculate the Melnikov function. Using (4.2) we get

MU(D)(θ0, t0) =

∫ ∞
−∞
vTVF × g · u(γU(D)

θ0
(t− t0))dt.

Thus, for small perturbations the flux is proportional to
√
Ta− Tac, and initially

increases. This conclusion was also reached in Broomhead & Ryrie (1988). Our
treatment of the Melnikov calculation is simpler because we do not base it on the
two-dimensional Poincaré map but on Gruendler’s (1985) theory coupled with use of
the underlying integrals of motion as described in § 2. Thus, the technical problems
related to the fact that it is not possible to form a Poincaré map because of the
existence of the co-rotating surface are not present. These problems were resolved in
Broomhead & Ryrie (1988) using different methods.

While we have shown that the flux is expected to increase at the onset of WVF
and is expected to decrease at the high end of the Reynolds number consistent with
the stable WVF, it is not guaranteed that the flux has one maximum in this range.
In fact Wereley & Lueptov’s data show oscillations in the region betwen monotone
increase and monotone decay. Rudman’s numerical data, on the other hand, show
only one extremum with the effective diffusivity first increasing with the appearance
of WVF and then decreasing.

4.8. The effect of molecular diffusion

Assume that the fluid has molecular diffusivity D. The molecular diffusion is the
second mechanism (besides chaotic advection) that affects the flux across the surface
S . If there is no mean axial flow in the apparatus, and no ‘accelerator modes’ (Mezić,
Brady & Wiggins 1996), the thermal boundary layer induced by molecular diffusion
is proportional to

√
D (Shraiman 1987) at large Péclet numbers. The fluxes induced

by molecular diffusivity and chaotic advection can be added to yield the total flux. In
non-dimensional terms the scaling of the axial effective Péclet number is thus given
by

Pe−1
eff ∼ c1Re

−1/2 + c2Pe
−1/2 (4.3)

where Pe = ReSc, Sc = ν/D and c1, c2 are constants. Thus,

Pe−1
eff ∼ C + Sc−1/2

Re1/2Sc1/2
(4.4)

where C is a constant. In Desmet et al. (1996) the effective axial diffusivity was shown
to fit the relationship

Pe−1
eff ∼ Re−1/2Sc−1/2 (4.5)

or

Deff ∼ Re−1/2Sc−1/2. (4.6)

This type of relationship cannot hold for all the values of Re, Sc, as imagine an
experiment in which ν = const. but D becomes smaller and smaller. Then, according
to (4.6), the effective diffusivity Deff would tend to zero. This cannot be, as there is a
constant advective flux of the order Re−1/2. Because of the similarity of (4.4) and (4.5)
in some regimes, the data can seem to follow (4.5). This is easily seen by rewriting
(4.3) as

Pe−1
eff ∼ c1Re

−1/2 + c2Re
−1/2Sc−1/2
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where c1 is on the order of the maximum of the Melnikov function (2.2). Thus, if
c1 � c2Sc

−1/2, Pe−1
eff ∼ Re−1/2Sc−1/2. The ‘penetration model’ discussed by Desmet et

al. holds only approximately when the inter-vortex advective flux (the existence of
which is verified in the experiments) is accounted for. It is important to notice that
(4.3) has the right behaviour in both the limits Re→∞ and Pe→∞.

5. Conclusions
In this paper we have discussed the dependence of the advective flux on the

Reynolds number in steady, three-dimensional Navier–Stokes flows with no-slip con-
ditions at the boundaries. Using Melnikov theory, we have predicted that at large but
finite Reynolds numbers the flux should scale as Re−1/2, like the perturbation due
to boundary layers to an Euler flow. Thus, the flux in steady flows should decrease
as the Reynolds number is increased, at large Reynolds numbers. The particular
example that we used for the illustration of the concepts is the wavy vortex flow in
the Taylor–Couette apparatus which is steady in a rotating frame.

Advective flux is all-important in the case of transport and mixing of immiscible
fluids (see e.g. Solomon et al. 1996). In the more common, miscible, situation we
have to take into account molecular diffusivity. We have shown that in the general
case for large Reynolds and Péclet numbers the flux will scale as c1Re

−1/2 + c2Pe
−1/2.

Our theory relies on a number of assumptions, the more important of which are: (i)
the decomposition of Navier–Stokes vector fields into an Euler solution, a boundary
layer solution and a small correction on the order of the size of the viscous boundary
layer; (ii) the upper bounds on the flux obtained by constructing minimal flux surfaces
(MacKay 1993) are assumed to be optimal.

We developed the theory in detail for the vortex-breakdown-type flow, for which
separating surfaces do not intersect the boundary layer. We have also discussed wavy
vortex flow (WVF) in the Taylor–Couette apparatus, for which separating manifolds
are within shear layers that join the boundary layer. The Taylor vortex flow becomes
unstable to a time-dependent wavy perturbation that is steady in the rotating frame.
This new solution, called the WVF, loses stability at a Reynolds number an order
of magnitude larger. After the onset of the wavy instability (i.e. for the low end of
Reynolds numbers for which the WVF is stable) the inter-vortex flux increases (as
observed already by Broomhead & Ryrie 1988) and we have shown that for the
high end of the Reynolds numbers, for which the WVF is stable the flux decreases.
Thus, our considerations also indicate the existence of an optimal Reynolds number
that maximizes flux in the WVF. This prediction seems to be confirmed by the
experimental results of Wereley & Lueptow (1998). We have also considered the case
when molecular diffusivity is important and predicted its scaling. The experimental
realization of the scalings that we get at the high Reynolds number end of the WVF
existence depends on whether the scaling regime has been achieved. Depending on
the other parameters of the problem, there is more hope that the scaling regime is
reached if the WVF is stable for higher Reynolds numbers.

To calculate the flux we have employed the Melnikov method. We have related
the Melnikov function to physical quantities such as the Bernoulli integral of motion
for Euler flows. The Melnikov function can thus be interpreted as the integral over
the unperturbed heteroclinic orbit of the flux of the Navier–Stokes flow through the
‘unperturbed’ Lamb surfaces which are the level sets of the Bernoulli integral. In the
case of the volume-preserving (e.g. rotational) symmetry of the underlying flow, the
Melnikov function was related to the cross-product of the unperturbed velocity field
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with the infinitesimal generator of the symmetry group, thus making a connection to
the recent geometrical theories of three-dimensional volume-preserving flows (Mezić
1994; Mezić & Wiggins 1994; Haller & Mezić 1998).

A theory similar to the one described here can be developed for time-dependent
Navier–Stokes flows with a volume-preserving symmetry (e.g. rotational or trans-
lational) in a bounded container. A theory similar to the present one, for two-
dimensional unbounded flows, was advanced by Balasuriya et al. (1997), with different
scalings due to the absence of boundaries. There are a number of other fluid dynamical
and magneto-hydrodynamical contexts in which similar ideas can be employed.

Let us close the paper with the observation that the experimental and numerical
evidence for the phenomenon described here is far from being conclusive. The studies
that have been done contain a restricted number of data points, and any scalings that
are extracted suffer from the small sample defect. It is our hope that this paper will
tempt more experimental work on the topic.

Thanks are due to Greg King, Pete Ashwin, George Rowlands and Thanasis
Yannacopoulos for many useful discussions on Taylor vortex flows. Many thanks
also to Murray Joe Rudman for providing more numerical data on the effective
diffusivity. Fotis Sotiropoulos (re)directed my attention to vortex breakdown type
flows by showing me his experimental and numerical results. This research was
partially supported by the NSF grant DMS-9803555 and ONR grant N00014-98-1-
0056.
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